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A B S T R A C T   

Smart healthcare has advanced the medical industry with the integration of data-driven approaches. Artificial 
intelligence and machine learning provided remarkable progress, but there is a lack of transparency and inter
pretability in such applications. To overcome such limitations, explainable AI (EXAI) provided a promising 
result. This paper applied the EXAI for disease diagnosis in the advancement of smart healthcare. The paper 
combined the approach of transfer learning, vision transformer, and explainable AI and designed an ensemble 
approach for prediction of disease and its severity. The result is evaluated on a dataset of Alzheimer’s disease. 
The result analysis compared the performance of transfer learning models with the ensemble model of transfer 
learning and vision transformer. For training, InceptionV3, VGG19, Resnet50, and Densenet121 transfer learning 
models were selected for ensembling with vision transformer. The result compares the performance of two 
models: a transfer learning (TL) model and an ensemble transfer learning (Ensemble TL) model combined with 
vision transformer (ViT) on ADNI dataset. For the TL model, the accuracy is 58 %, precision is 52 %, recall is 42 
%, and the F1-score is 44 %. Whereas, the Ensemble TL model with ViT shows significantly improved perfor
mance i.e., 96 % of accuracy, 94 % of precision, 90 % of recall and 92 % of F1-score on ADNI dataset. This shows 
the efficacy of the ensemble model over transfer learning models.   

1. Introduction 

In recent years, the healthcare industry has observed noteworthy 
advancements in technology, leading to the rise of smart healthcare 
systems. These systems influence various technologies, as well as arti
ficial intelligence (AI), to improve healthcare delivery, improve patient- 
centric results, and rationalize medical procedures. One crucial feature 
of smart healthcare is disease diagnosis, which plays an important role 
in recognizing and treating illnesses promptly and precisely [1,2]. The 
start of smart healthcare systems, determined by technological ad
vancements for example AI and machine learning (ML) that revolu
tionized the healthcare industry [3–5]. Disease diagnosis, a serious 
component of healthcare, has been meaningly impacted by these ad
vancements, paving the way for more accurate, efficient, and 
patient-centric diagnostic procedures. The addition of smart technolo
gies into healthcare settings offers huge potential for refining disease 
and eventually enhancing patient consequences. Researchers have 

recognized the status of patient’s health in smart healthcare and have 
investigated and explored the domain. Chui et al. [1] highlighted the 
innovation, technologies, and applications relevant to disease prediction 
within smart healthcare. Similarly, Tian et al. [2] discuss the broader 
concept of smart healthcare, emphasizing the need to make medical care 
more intelligent. Although not explicitly focused on disease prediction, 
their work sets the stage by establishing the context of smart healthcare 
and its potential to transform healthcare services. To further delve into 
disease diagnosis in smart healthcare, the research emphasizes the 
importance of innovation, improvement, and skill development in this 
field, providing insights into advancements and strategies for enhancing 
investigative processes within smart healthcare systems [3]. The inte
gration of AI and IoT for healthcare is explored, highlighting the benefits 
of combining these technologies to create intelligent models [4]. Disease 
diagnosis within the context of applying AI in healthcare is discussed, 
shedding light on the potential benefits and challenges associated with 
implementing AI-based systems, setting the stage for further 
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advancements in this area [5–7]. These studies emphasize the vital role 
and transformative potential of AI/ML in smart healthcare for health
care delivery. By leveraging smart technologies and incorporating 
AI-driven approaches, healthcare providers can enhance accuracy, and 
efficiency, and ultimately improve patient outcomes. Explainable AI 
(EXAI) is of paramount importance within smart healthcare systems due 
to the rising utilization of AI algorithms for disease prediction. Ensuring 
transparency and interpretability in the decision-making process is 
imperative [8–14]. EXAI techniques provide insights into how AI algo
rithms arrive at their decisions, fostering trust and acceptance among 
healthcare professionals, patients, and regulatory bodies. By under
standing the reasoning behind AI-driven diagnoses, confidence in the 
technology is enhanced, leading to improved adoption and more reliable 
outcomes. EXAI has gained significant attention and has been applied in 
various healthcare domains, including disease diagnosis. Zhang et al. 
[15] discuss the applications of explainable AI in disease prediction and 
surgery. Their study explores how EXAI techniques can improve diag
nostic accuracy and surgical decision-making by providing interpretable 
insights into AI algorithms’ decision processes [7]. The taxonomy of 
EXAI is presented in Fig. 1. 

In the context of smart healthcare 5.0, AI/EXAI/ML models have 
been employed to analyze MRI scans and showcase their potential in 
diverse medical applications. The flowchart in Fig. 2 illustrate the smart 
healthcare framework. One approach that has gained traction is the 
utilization of transfer learning models. MRI scans are commonly used to 
identify diseases. But the manual interpretation of these scans can be 
time-consuming and produce inaccurate results. Deep learning (DL) al
gorithms offer a promising solution by automating and improving the 
accuracy of tumor detection. In research studies, DL algorithms have 
been employed for tasks such as automatic segmentation and prediction 
of MRI scans. Techniques like Geometric Median Shift and convolutional 
neural networks (CNNs) have been used for automatic tumor detection 
and segmentation. This study aims to introduce an ensemble model that 
combines transfer learning (TL)-based models with a vision transformer 
model and EXAI. The ensemble model seeks to enhance the performance 
of tumor detection by leveraging the strengths of multiple TL models. 
Using a single model faces the challenges of overfitting and biased 
conclusions. By utilizing an ensemble model that combines the strengths 
of transfer learning (TL) models with the vision transformer model and 
EXAI for better feature extraction and improved performance in solving 
complex problems. 

The paper discusses the remarkable advancements in smart health
care, emphasizing the role of AI and explainable AI (EXAI) in disease 
diagnosis. Key achievements include technological innovations, the 
integration of AI and IoT, and the importance of transparent AI decision- 
making. Advanced achievements involve using transfer learning for MRI 
analysis, interdisciplinary collaboration, regulatory advancements, and 
the global impact of these technologies. These advancements aim to 
improve patient outcomes and make healthcare more efficient and 
accessible. It underscores the importance of Explainable AI (EXAI) for 
transparency and trust in AI-driven diagnoses. 

Motivated by this, the paper contributes following:  

• In this paper, transfer learning algorithms, namely VGG19, 
ResNet50, Densenet121, and InceptionV3 models are compared for 
Alzheimer’s disease severity prediction using brain MRI images.  
• Then ensemble of vision transformer models is implemented with 

transfer learning algorithms, namely VGG19, ResNet50, Dense
net121, and InceptionV3.  
• The paper presented the comparative analysis of single transfer 

learning models with ensemble models.  
• The ensemble model outperformed the other CNN-based transfer 

learning algorithms.  
• Additionally, the paper implemented the GradCAM model to provide 

the explainability of the model. 

The remaining sections of the paper include: Section 2 provides a 
discussion of related work; a description of the proposed model’s ar
chitecture and a description of models are illustrated in Section 3. Sec
tion 4 presents the performance evaluation and finally in section 5 
concluding remarks with future research scopes are presented. 

2. Related work 

Dave et al. [8] conducted a study using explainable AI on a heart 
disease dataset. Their research highlights the importance of EXAI in 
healthcare, demonstrating how interpretability can enhance the un
derstanding of AI models’ decisions and improve the diagnosis of heart 
disease. Otaki et al. [10] explored EXAI in clinical applications such as 
single-photon emission computed tomography (SPECT) for coronary 
artery disease (CAD) diagnosis. In the area of cardiac disorders, Anand 
et al. [11] presented an explainable AI for designing a decision model for 
disease diagnosis. Author analyzed the ECG data using SHAP for deci
sion making capability of deep CNN. Basheera et al. [16] proposed 
hybrid CNN model for Alzheimer’s disease classification. Author 
extracted the gray matter from brain voxels. For image enhancement 

Fig. 1. Taxonomy of EXAI methods [15].  

Fig. 2. Flowchart of smart healthcare.  
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gaussian filter was used with independent component analysis (ICA) for 
segmentation process. Rosenson et al. [17] provided an approach of AI 
to identify dysfunctional high-density lipoprotein (HDL) and its associ
ation with atherosclerotic cardiovascular disease. Al’Aref et al. [18] 
explored the applications of machine learning for the identification of 
cardiovascular disease using different imaging modalities. Joo et al. [19] 
focused on the clinical inferences of machine learning in forecasting the 
incidence of cardiovascular diseases. Dey et al. [20] provided an in
clusive review of the applications of AI using cardiovascular imaging 
and explored its efficacy to improve image analysis, risk prediction, and 
treatment response assessment, thereby enhancing cardiovascular dis
ease management. Huang et al. [21] used AI applications for the diag
nosis of different cancer types and underscored the importance of 
AI-driven solutions in personalized medicine. Xu et al. [22] focused on 
the conversion of cancer genomics for precision medicine with the 
application of AI. The authors discuss the challenges and potential of 
integrating AI with cancer genomics data, emphasizing its impact on 
treatment strategies, patient outcomes, and precision medicine. They 
highlight role of AI in identifying therapeutic targets, predicting treat
ment responses, and facilitating personalized approaches. Bi et al. [23] 
examined the role of AI in analyzing radiological images with patho
logical data. Adir et al. [24] investigated the integration of AI and 
nanotechnology in precision cancer medicine. They emphasized the 
potential of AI to analyze large datasets from nanotechnology-based 
imaging, enabling improved diagnosis, targeted therapy, and treat
ment response monitoring. Multidisciplinary collaborations are crucial 
to fully leverage AI and nanotechnology in cancer care. Coccia [25] used 
the advancement of AI tools for cancer detection with the integration of 
imaging applications. Integrating AI-driven image analysis with clinical 
practices has the potential to enhance early detection, treatment plan
ning, and patient outcomes in cancer care. Vieira et al. [26] presented 
the correlation between psychiatric and neurological disorders with the 
application of convolutional neural networks (CNNs). Zhang et al. [27] 
proposed a machine-learning approach for identification of the neuro
logical cerebrovascular disease using MRI data. Surianarayanan et al. 
[28] applied machine learning for diagnosing neurological conditions 
with radiological images. Sappagh et al. [29] developed a multimodal 
system for the diagnosis of Alzheimer’s disease with the incorporation of 
explainable AI. Sudar et al. [30] used the EXAI model with VGG for the 
identification of Alzheimer’s disease and its severity stage. Lombardi 
et al. [31] focused on the development of a robust framework for 
assessing and predicting cognitive decline in patients with neurode
generative diseases like Alzheimer’s. Jain et al. [32] presented a Visual 
Explainable AI model for identifying and classifying dementia using MRI 
scans and achieved an accuracy of 74 % only. Whereas, Tuvshinjargal 
et al. [33] classified the diseases with a quantization technique that was 
applied over MRI data and used the VGG-C Transform model. Mohi et al. 
[34] employed Convolutional Neural Network (CNN) model for Alz
heimer’s disease stages detection. Nijaguna et al. [35] explored the use 
of the Quantum Fruit Fly Algorithm (QFFA) in combination with 
ResNet50 and VGG16 deep learning models for medical diagnosis. This 
approach offers a promising solution for improving medical diagnosis 
accuracy in handling large datasets. Chhabra and Kumar [36] presented 
a smart healthcare system that employs the DenseNet 121 deep learning 
model to simultaneously detect multiple diseases from chest X-ray im
ages. The research addresses the challenge of identifying various chest 
conditions. This approach holds promise for enhancing healthcare di
agnostics and decision-making. Odusami et al. [37] addressed the 
challenge of early Alzheimer’s disease (AD) detection using multimodal 
neuroimaging data from MRI and PET scans. The proposed approach 
combines these data sources using discrete wavelet transform (DWT) 
and transfer learning with VGG16. The fused images are classified using 
a vision transformer. Testing on ADNI dataset showed high accuracy, 
with 93.75 % accuracy for PET data, surpassing previous studies and 
highlighting its potential for improving AD diagnosis accuracy. Miltia
dous et al. [38] introduced a novel method called DICE-net for 

classifying Alzheimer’s disease (AD) using EEG data. DICE-net out
performs baseline models, achieving an 83.28 % accuracy in dis
tinguishing AD patients from healthy individuals, with potential 
applications in early AD diagnosis and interventions. Qiu et al. [41] 
presented an interpretable deep learning strategy for identifying Alz
heimer’s disease signatures. It utilizes multimodal inputs including MRI, 
age, gender, and Mini-Mental State Examination scores. The framework 
combines a fully convolutional network, which creates high-resolution 
maps of disease probability from brain structure, with a multilayer 
perceptron. This approach allows for precise and intuitive visualization 
of individual Alzheimer’s disease risk, aiding in accurate diagnosis. Zhu 
et al. [42] introduced a dual attention multi-instance deep learning 
network (DA-MIDL) for early diagnosis of Alzheimer’s disease (AD) and 
its prodromal stage, mild cognitive impairment (MCI). DA-MIDL has 
three main components: Patch-Nets with spatial attention blocks for 
feature extraction, an attention multi-instance learning (MIL) pooling 
operation for balanced patch contribution, and an attention-aware 
global classifier for AD-related classification. Tested on 1689 subjects 
from ADNI and AIBL datasets, the DA-MIDL model shows improved 
accuracy and generalizability in identifying pathological locations and 
classification performance. Xia et al. [43] proposed a deformable 
self-attention module, which selects the positions of key and value pairs 
in a data-dependent manner. This method allows the self-attention 
module to focus on relevant regions and capture more informative fea
tures. Based on this, they present the Deformable Attention Transformer, 
a general backbone model with deformable attention for image classi
fication and dense prediction tasks. Their experiments demonstrate 
consistently improved results across various benchmarks. Hu et al. [44] 
presented the Conv-Swinformer for Alzheimer’s disease prediction from 
brain MRI images by hybridization of CNN and Transformer 

Table 1 
Recent research contributions.  

Ref Technique 
Used 

Disease Type Input Images 

Otaki et al. [10] EXAI Coronary Artery 
Disease (CAD) 

SPECT 

Basheera et al. 
[16] 

Hybrid CNN Alzheimer’s Disease MRI 

Zhang et al. [27] Machine 
Learning 

Cerebrovascular 
Disease 

MRI 

Surianarayanan 
et al. [28] 

Machine 
Learning 

Neurological 
Conditions 

Radiological Images 

Sappagh et al. 
[29] 

EXAI Alzheimer’s Disease MRI 

Sudar et al. [30] EXAI with 
VGG 

Alzheimer’s Disease MRI 

Lombardi et al. 
[31] 

Machine 
Learning 

Neurodegenerative 
Diseases 
(Alzheimer’s) 

Neuropsychological 
Test Results 

Jain et al. [32] Visual EXAI Dementia MRI Scans 
Tuvshinjargal 

et al. [33] 
VGG-C 
Transform 
with 
Quantization 

Various Diseases MRI 

Mohi et al. [34] CNN Alzheimer’s Disease 
Stages 

MRI 

Odusami et al. 
[37] 

DWT and 
Transfer 
Learning with 
VGG16 

Alzheimer’s Disease 
(AD) 

MRI and PET Scans 

Miltiadous et al. 
[38] 

DICE-net Alzheimer’s Disease 
(AD) 

EEG Data 

Qiu et al. [41] Interpretable 
Deep Learning 

Alzheimer’s Disease MRI, Age, Gender, 
MMSE Scores 

Zhu et al. [42] DA-MIDL Alzheimer’s Disease 
(AD) and Mild 
Cognitive 
Impairment (MCI) 

MRI 

Hu et al. [44] Conv- 
Swinformer 

Alzheimer’s Disease Brain MRI Images  
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technologies. Some of the critical literature used for medical image 
processing are presented in Table 1. 

The presented technologies offer advantages such as improved 
diagnostic accuracy, potential for early disease detection, and person
alized treatment options. However, they also come with challenges 
including the need for large datasets, data preprocessing complexity, 
and specialized equipment requirements. Overall, these innovative 
techniques hold great promise in revolutionizing healthcare by 
providing more accurate and timely diagnoses, ultimately leading to 
improved patient outcomes and interventions. 

3. Methodology used 

In this paper, a smart healthcare model is presented for disease 
diagnosis using an ensemble approach of transfer learning and vision 
transformer leveraging Explainable AI. For experimental evaluation, 
Alzheimer’s disease dataset [39] is considered. The dataset consists of 
819 subjects. The dataset contains 3 groups of subjects: AD, MCI, and 
CN. Here the model is designed to predict the disease and its severity 
level as “Early, Mild, High, and Normal”. The detection and classifica
tion followed several key steps, as presented in Fig. 3. Algorithm for the 
proposed work is presented below: 

1: Start 
2: Input MRI brain images. 
3: Preprocess the images using image enhancement and augmenta
tion techniques. 
4: Extract features using an ensemble model of transfer learning 
InceptionV3 and ViT. 
5: Build a classification model with a softmax layer. 
6: Train the model. 
7: End training. 
8: Input new MRI brain images for Alzheimer severity detection. 
9: Feed the images to the trained model. 
10: Apply the softmax function to obtain probability scores for each 
severity class. 
11: Determine the detected Alzheimer’s severity based on the 
probability scores. 
12: End 

In this work, Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
[39] is used. The ADNI is a significant, multi-site study focused on 
improving clinical trials for Alzheimer’s disease (AD) prevention and 
treatment. The data set comprises MRI images, divided into four classes 
in both training and testing sets: Mild Demented, Moderate Demented, 
Non-Demented, and Very Mild Demented. 

Image Preprocessing is applied to distinguishing healthy areas from 
anomalous regions in medical images is challenging. Therefore, pre- 
processing is essential. Medical images often have a limited dynamic 
range, making it difficult to adequately expose all pixels. To address this, 
increasing the exposure in some under-exposed regions can enhance the 
visibility and clarity of the image. This is mathematically represented as: 

Ie=
∑M

m=1
Im ∗ qi (1)  

Where, exposure or enhancement is represented as qi in image Im with 
color channels M and result in improved exposure image. 

Then augmentation is applied such as flip and rotation, translation, 
scaling and cropping, and shearing for medical imaging learning. 

The transfer learning (TL) models are ensembled together with ViT- 
based models to enhance their performance. The proposed TL methods 
integrated with ViT exhibit superiority in recognizing complex patterns 
and adapting to diverse healthcare datasets, thereby providing 
enhanced performance in smart healthcare data analysis. The advanced 
combination allows for efficient learning with less labelled data, making 
it a valuable approach in the data-scarce healthcare field. While intro
ducing complexity due to the need for careful tuning and the integration 
of VT, the significant improvement in performance metrics justifies this 
complexity. Other machine learning methods were not considered in the 
study to focus on enhancing and optimizing existing, proven architec
tures, thereby ensuring that the research findings could be readily 
applied and generate immediate value in the field of smart healthcare. 

Here, in this paper, we have analyzed different transfer learning 
models ensembled together with ViT-based models. After running these 
models, we analyzed and compared their results. Furthermore, we 
assessed the classification accuracy of ensemble models using GradCam, 
which is an Explainable AI tool. The input image dimensions were set to 
128 × 128, and we used weights from the ImageNet dataset. A batch size 
of 64 was used throughout. This model converts the images into 1D- 

Fig. 3. Flowchart of methodology.  
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array feature maps. The model’s final layer uses softmax activation for 
multiclass classification. Adam optimizer with a learning rate of 1e-5 is 
used. Adam adjusts the learning rates for specific parameters using the 
adaptive learning rate technique as stated below: 

l= −
∑M

c=1
yo,c log

(
po,c
)

(2)  

σ( z→)i =
ezi

∑C

j=1
ezj

(3)  

Where σ is termed as softmax function. Here input vector is represented 
as z, and the exponential function as z(i) represents the standard expo
nential function for the ith feature vector. The output vector consists of C 
classes, where the exponential function of z(j) represents the standard 
exponential function. For training, InceptionV3, VGG19, Resnet50, and 
Densenet121 transfer learning models were selected for ensembling 
with vision transformer. The ensemble model with transfer learning and 
vision transformer has several benefits: improved performance by 
combining multiple models, enhanced robustness and generalization by 
reducing errors and capturing diverse patterns, utilization of comple
mentary information through different transformations, leverage of pre- 
trained models for faster initialization, and overcoming data scarcity, 
and enhanced resistance to perturbations through data augmentation. 
This approach is effective for vision-based tasks. These are discussed 
below: 

3.1. VGG19 

One of the popular transfer learning model is VGG19 which is a type 
of convolutional neural network model with 19 layers. Out of 19 layers, 
16 layers are of convolution layer, and 3 fully-connected layers with 5 
max-pooling layers, and 1 softmax layer. The kernel size is of 3× 3 with 
stride value of 1. Alognwith that spatial padding is also added to pre
serve the resolution of image. Activation function used in VGG19 is the 
ReLU activation after each convolution layer. This preserves the non- 
linearity of the model. By default input image size of the VGG19 is 
224× 224 pixels with 3 RGB channels. Spatial dimension of the pro
cessed features in VGG19 is reduced by applying Maxpooling layer. This 
layer use kernel size of 2× 2 with stride value of 2 is used. The last fully- 
connected layer consists of 4096 neurons. Finally, the fully-connected 
layer is connected with softmax layer. The learning parameters for 
VGG19 is 19.6 billion [40]. 

3.2. ResNet50 

ResNet is a deep neural network with nearly 50 layers that uses re
sidual blocks. It achieved high performance in various image recognition 
competitions. The concept of adding more layers to learn complex fea
tures has limitations in traditional CNNs. ResNet addresses this issue by 
introducing shortcut connections that allow direct mapping from input 
to output. This architecture is widely used for image classification, ob
ject localization, and detection. It can also be extended to other tasks, 
providing depth advantages while reducing processing costs. ResNet 
models like ResNet101 and ResNet152 have fewer filters and a simpler 
structure compared to VGG networks [41]. The authors of ResNet 
introduced identity connections that directly connect the input of a layer 
to its output. This enables the layers to learn a residual mapping, 
denoted as H(x), where x is the input and F is the output from the 
identity connections. They also allowed the nonlinear layers to learn a 
different mapping. The ResNet architecture includes skip connections 
that connect the input directly to the output, allowing for the learning of 
residual mappings. This helps alleviate the issue of vanishing gradients 
and enables better performance of deeper layers. The ResNet50 model, 
in particular, uses a bottleneck architecture and consists of 

convolutional and pooling layers, repeated several times with varying 
kernel sizes. The ResNet50 architecture is a deep neural network con
sisting of several convolutional and pooling layers. Here is a summary of 
its structure:  

• The network starts with a convolutional layer with a kernel size of 7 
× 7 and 64 distinct kernels. Each kernel has a stride size of 2, 
resulting in one layer.  
• Then it is followed by a max-pooling layer that contains a stride value 

of 2.  
• Next, there are three sets of convolutional layers: 

•The first set includes three consecutive layers with kernel sizes 
of 1 × 1, 64; 3 × 3, 64; and 1 × 1, 256. This set is repeated three 
times, resulting in nine layers. 
•The second set consists of four layers with kernel sizes of 1 × 1, 
128; 3 × 3, 128; and 1 × 1, 512. This set is repeated four times, 
total of 12 layers. 
•The third set includes six layers with kernel sizes of 1 × 1, 256; 3 
× 3, 256; and 1 × 1, 1024. This set is repeated six times, resulting 
in 18 layers.  

• Following the third set, there is another set of three layers with 
kernel sizes of 1 × 1, 512; 3 × 3, 512; and 1 × 1, 2048. This set is 
repeated thrice and results in nine layers.  
• After the convolutional layers, an average pooling layer is applied.  
• Finally, there is a fully connected layer with 1000 nodes, followed by 

a softmax function, resulting in one layer. 

3.3. Densenet121 

DenseNet is a type of fully connected convolutional neural network 
(CNN) that employs dense connections between layers. Unlike tradi
tional CNNs, where layers are sequentially connected, DenseNet con
nects each layer to all preceding and subsequent layers, forming dense 
connections. This design addresses the vanishing gradient problem and 
improves accuracy in high-level neural networks. DenseNet is a con
volutional neural network architecture that shares similarities with 
ResNet but also incorporates some distinctive features [42]. One of its 
key advantages is parameter efficiency, achieved by utilizing a small 
number of parameters per layer. Moreover, DenseNet benefits from deep 
implicit supervision, which enhances the flow of gradients throughout 
the network. This architecture employs dense connections, ensuring that 
information transmitted across multiple levels is not lost or diminished 
as it traverses the network. Unlike traditional CNNs that sum feature 
maps, DenseNet concatenates them, enabling feature reuse and reducing 
the overall number of parameters. The fundamental structure of Den
seNet includes batch normalization layers, ReLU activation functions, 
and 3x3 convolutions at each step. Each dense block within the archi
tecture comprises a varying number of layers (repeats), with each layer 
consisting of two convolutional layers: a bottleneck layer with a 1x1 size 
then a kernel of size 3x3 is used for convolution operation and a second 
layer is convolutional layer with 1x1 size with average pooling layer 
with stride 2. 

3.4. InceptionV3 

Inception V3 is an enhanced version of Inception designs that aim to 
reduce computational resources. Compared to VGGNet, Inception Net
works are more computationally efficient with fewer parameters and 
lower costs. To maintain these advantages while modifying an Inception 
Network, Inception v3 suggests optimization strategies such as factor
ized convolutions, regularization, dimension reduction, and parallelized 
calculations. These strategies facilitate easy adaptation of the model for 
different use cases while preserving computational efficiency. Inception 
v3 is constructed step-by-step, incorporating factorized convolutions, 
smaller convolutions, asymmetric convolutions, an auxiliary classifier, 
and an efficient technique for grid size reduction. The final architecture 
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of Inception v3 optimizes both computational efficiency and perfor
mance [36]. 

3.5. Vision transformer 

Vision Transformer (ViT) is a type of deep learning model that is 
based on embedding layered architecture that is used to process natural 
language requirements. Based on that concept the image patches are 
flattened and fed as sequences to the model for learning. These patches 
are flattened and fed into a Transformer encoder, which includes self- 
attention layers and feed-forward networks. ViT models are pre- 
trained on large datasets and then fine-tuned for specific tasks, 
achieving competitive performance. However, they require more 
computational resources compared to convolutional neural networks 
(CNNs) [43]. Researchers are exploring variations and improvements, 
such as hybrid models and task-specific approaches. To adapt the 
Transformer model for images, the image is reshaped into patches and 
represented as token embeddings. Position embeddings are added to 
preserve positional information. The sequence of patch embeddings, 
along with position embeddings, is inputted to the Transformer encoder, 
which consists of multiple layers of self-attention and MLP blocks. Layer 
normalization and residual connections are applied for improved 
gradient flow. A learnable embedding is added at the beginning of the 
sequence, serving as the image representation. A classification head, 
typically an MLP or linear layer, is attached to this representation for 
tasks like pre-training or fine-tuning. 

An alternative approach to forming the input sequence in the 
Transformer model is to utilize feature maps obtained from a convolu
tional neural network (CNN), in addition to raw image patches. In the 
ensemble model depicted, the patch embedding projection is applied to 
patches that are extracted from the CNN feature map, as illustrated in 
Fig. 4. One option is to utilize patches with a spatial size of 1x1, effec
tively flattening the spatial dimensions of the feature map and projecting 
it to the appropriate dimension required by the Transformer. To sup
plement the patch embeddings and preserve positional information 
within the input sequence, the classification input embedding and po
sition embeddings are incorporated. Detailed steps are provided as 
below: 

The ViT is a deep learning architecture that utilizes transformer 
models for visual tasks. The mathematical expressions involved in the 
ViT working flow can be represented as follows: 

1: Patch Extraction 

Patches (P,P,C)←Input image(H,W,C)
{Where,H= height,W= width, P= patch sze,C= No. of channel} . 

2: Patch Embedding 

LD Embedding Space (N,D)←̅̅̅̅̅̅̅̅̅̅
linear projection

Patches(P,P,C)
{Where,D= Embedding Size,N= No. of patches} . 

3: Positional Encoding 

Positional Encoded Patches←̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅Sine and Cosine Functions LD Embedding 
Space (N,D) . 

4: Transformer Encoder 

Feature Maps←̅̅̅̅̅̅̅̅̅̅̅attention network Positional Encoded Patches . 

5: Classification 

Severity Probablity←̅̅̅̅̅
softmax

Feature Maps. 

3.6. GradCAM 

For designing deep learning more understanding and interpretable 
for medical imaging applications GradCAM was introduced. This is class 
activation map that have ability to visualize and explain the decisions. 
During detection and prediction of task it is required to visualize the 
internal feature maps generated and provide the visual explanation. In 
this approach a localization map [46] is created as 

LGRADCAM=RELU

(
∑

k
αkAk

)

(4)  

Where, αk feature weight and Ak is the feature map. 

4. Results and discussions 

This section presented the results and discussions for Alzheimer’s 
disease diagnosis and its severity analysis for the deployment of smart 
healthcare. The dataset consists of ~5000 images [39]. Among these 70 
% of images are used for training and 30 % for testing or validation. The 
entire model is simulated on python platform over google colab with 
facility of Tesla P100-PCIE GPU. The performance evaluation included 
accuracy, precision, recall, and F1_score, as stated below: 

Accuracy=
(TP+ TN)

(TP+ TN + FP+ FN)
(5)  

Fig. 4. Ensemble Model of Transfer Learning and Vision transformer.  
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Fig. 5. Comparison of Confusion Matrix of Transfer Learning Model with Ensemble Transfer Learning with Vision transformer Model.  
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Precision=
(TP)

(TP+ FP)
(6)  

Recall=
(TP)

(TP+ FN)
(7)  

F1 score=
(2× Precision× Recall)
(Precision+ Recall)

(8) 

Fig. 5 shows a comparison of the confusion matrix of the transfer 
learning model with ensemble transfer learning with the vision trans
former model for VGG19, VGG19+VT, ResNet50, ResNet50+VT, Den
senet121, Densenet121+VT, InceptionV3, and InceptionV3+VT 

methods. The confusion matrix of VGG19 shows more missclassification 
as compared to VGG19+VT. Whereas ResNet50 shows high mis
sclassification as compared to ResNet50+VT, Densenet121+VT shows 
better classification result as compared to Densenet121. Similar pattern 
was also observed in InceptionV3, and InceptionV3+VT. 

Fig. 6 shows a comparison of training and validation accuracy of the 
transfer learning model with ensemble transfer learning with vision 
transformer model in which graph is plotted between accuracy and 
epochs. For VGG19 model training accuracy is approx. 60 % whereas the 
validation accuracy was approx. 55 % but VGG19+VT model achieved 
training and validation accuracy of more than 90 %. Similar pattern was 
observed in ResNet50 as well as ResNet50+VT model. For Densenet121 
model accuracy is also ranging between 55 and 60 % and 

Fig. 6. Comparison of Training and Validation Accuracy of Transfer Learning Model with Ensemble Transfer Learning with Vision transformer Model.  
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Densenet121+VT model achieved an accuracy of approx. 95 %. Similar 
pattern was also observed in InceptionV3 as well as InceptionV3+VT. 
Fig. 7 shows a comparison of training and validation loss of the transfer 

learning model with ensemble transfer learning with vision transformer 
model in which graph is plotted between loss and epoch for VGG19 
model loss is near about 0.4 and for VGG19+VT model loss is near about 
0.6. Similar pattern was observed in all other models i.e., ResNet50, 
ResNet50+VT, Densenet121, Densenet121+VT, InceptionV3 and 
InceptionV3+VT. 

Table 2 shows that the four models (Vgg19, ResNet50, DenseNet121, 
and InceptionV3) have similar performance with an accuracy of 0.58. 
They also exhibit comparable precision and recall values, ranging from 
0.52 to 0.56 and 0.40 to 0.42, respectively. InceptionV3 achieves the 
highest F1-score at 0.44, while the other models have slightly lower 
scores ranging from 0.42 to 0.43. Overall, the models’ performance 
metrics indicate limited discrimination and suggest that they may 

Fig. 7. Comparison of Training and Validation Loss of Transfer Learning Model with Ensemble Transfer Learning with Vision transformer Model.  

Table 2 
Performance of transfer learning models.   

“Accuracy” “Precision” “Recall” “F1-score” 

Vgg19 0.58 0.55 0.40 0.43 
ResNet50 0.58 0.53 0.40 0.42 
DenseNet121 0.58 0.56 0.41 0.41 
InceptionV3 0.58 0.52 0.42 0.44  
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struggle to capture complex patterns in the data. 
Fig. 8 compares the performance of two models: a transfer learning 

(TL) model and an ensemble transfer learning (Ensemble TL) model 
combined with vision transformer (VT). The ensemble transfer learning 
models with vision transformer show improved performance compared 
to the individual models. They achieve higher accuracy, precision, 
recall, and balanced F1-scores, indicating an overall boost in classifi
cation performance. This suggests that combining multiple models and 
incorporating vision transformers enhances the models’ ability to 
correctly predict positive instances, capture actual positives, and ach
ieve a good trade-off between precision and recall. 

Fig. 9 presents the 10-fold cross validation for the ensemble transfer 
learning with vision transformer and achieved an average accuracy of 
96.5 %, average precision of 93.7 %, average recall of 89.7 %, and an 
average F1-score of 91.2 %. The results shows the model’s robustness 
and reliability, making it a potent tool for applications demanding high 
predictive accuracy and efficiency. 

Fig. 10 represents the GradCAM representation of classified 
outcome. GradCAM is an EXAI approach in computer vision that 

highlights critical regions in an image to help comprehend and interpret 
a model’s judgements. The image appears to be a composite of brain 
scans displayed with a color map overlay, which is commonly used in 
medical imaging to enhance visual analysis using GradCAM [45]. The 
spectrum of colors, ranging from cool to warm (blue to red) that rep
resents the gradient from low to high in white matter of brain that can 
identify the region for analysis of Alzheimer’s disease. The color varia
tions help in analysis of the critical region for decision-making for 
medical professionals. This will enhance the trust on AI-assisted 
diagnosis. 

In Fig. 11 comparative evaluation of various machine learning 
models, their respective performance scores were reported for a specific 
task. VGG16 was used in Ref. [37] and achieved performance of approx. 
81 %. DICE-Net [38] achieved an accuracy score of 83.28 %, while MLP 
[41] slightly outperformed it with an accuracy score of 83.40 %. How
ever, AttentionCNN [42] achieved an accuracy of 92.40 %. 
Conv-Swinformer [44] achieved an accuracy of 93.56 % The 
highest-performing model in this comparison was InceptionV3+VT, 
which reached an impressive accuracy score of 96 %. 

5. Discussion 

The initial transfer learning models—VGG19, ResNet50, Dense
Net121, and InceptionV3—demonstrated limited data discrimination 
and complex pattern recognition performance, yielding approximately 
58 % accuracy and F1-scores below 44 %. However, upon integrating 
the Vision Transformer (VT), the models exhibited significant en
hancements, notably improving accuracy, precision, recall, and F1-score 
metrics. 

This improvement carries important managerial implications. 
Firstly, the enhanced models support informed and reliable decision- 
making, contributing to better healthcare diagnosis, treatment plan
ning, and outcome prediction. Secondly, the efficient models enable 
optimal resource utilization, potentially reducing operational costs. 
Moreover, the heightened accuracy and reliability in data analysis 
mitigate risks associated with misdiagnosis and improper treatment 
planning. The models further provide valuable insights for effective 
strategic planning and policy-making in healthcare. 

In the context of managerial implications, it is crucial to emphasize 
that investing in training for staff to use and interpret data generated 
through these advanced models effectively is essential. This ensures that 
the benefits of the improved models are fully realized and integrated 
into healthcare practices. 

Key takeaways from the research underscore the significance of the 
VT integration with transfer learning models in addressing performance 
gaps of traditional models. This integration offers substantial advan
tages for healthcare practitioners and administrators, supporting 
decision-making, resource optimization, risk mitigation, and strategic 
planning. Continuous improvement, staff training, and fostering 
collaboration with technology experts emerge as pivotal elements for 
leveraging these advanced models effectively in the delivery of smart 
healthcare. 

The integration of vision transformer with traditional models like 
VGG19, ResNet50, DenseNet121, and InceptionV3 is examined for its 
significant improvements in accuracy, precision, recall, and F1-scores. 
This enhancement has profound implications in healthcare, aiding in 
informed decision-making, resource optimization, risk mitigation, and 
strategic planning. While acknowledging the limitations of the current 
research, the section also suggests future directions, emphasizing the 
need for continuous improvement and the application of these advanced 
models in healthcare. This comprehensive analysis not only highlights 
the technical advancements but also situates them within the broader 
context of their practical impact and future potential. 

Incorporating Vision Transformers (VT) with traditional machine 
learning models significantly enhances healthcare diagnostics and 
decision-making. However, a crucial gap in the discussion is the 

Fig. 8. Comparison of Transfer Learning Model with Ensemble Transfer 
Learning with Vision transformer Model. 

Table 3 
Performance of Ensemble Transfer Learning with Vision transformer Model.   

“Accuracy” “Precision” “Recall” “F1-score” 

Vgg19+VT 0.73 0.84 0.68 0.71 
ResNet50+VT 0.92 0.85 0.89 0.87 
DenseNet121+VT 0.96 0.91 0.90 0.90 
InceptionV3+VT 0.96 0.94 0.90 0.92 

Table 3 compares the performance of four different ensemble transfer learning 
models with vision transformer: Vgg19+VT, ResNet50+VT, DenseNet121+VT, 
and InceptionV3+VT. The table shows that DenseNet121+VT, and Incep
tionV3+VT achieved highest accuracy, InceptionV3+VT achieved highest pre
cision, recall and f1-score. 

Fig. 9. Cross-validation result.  
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interpretability and explainability of these models. For addressing this, 
Explainable AI (XAI) techniques can be utilized feature visualization 
that will enhance the interpretable of the layers of model and focusing 
on user-centric explainability that can bridge this gap. In future, this 
work will incorporate a detailed analysis of explainable AI (XAI) tech
niques, such as Layer-wise Relevance Propagation (LRP), SHAP, and 
LIME, could provide insights into the decision-making processes of these 
models. 

6. Conclusion 

The paper proposes a combined approach involving transfer 
learning, transformation techniques, and EXAI for diagnosing disease 
severity. The evaluation is conducted using an Alzheimer’s disease 
dataset, where pre-trained models and brain imaging data trans
formation improve diagnostic accuracy. EXAI techniques facilitate cli
nicians in understanding the factors contributing to the diagnosis, 
leading to better patient care. The proposed approach has the potential 
to enhance smart healthcare systems by enabling early detection and 
personalized treatment plans for Alzheimer’s disease, resulting in 

Fig. 10. Comparison of Transfer Learning Model with Ensemble Transfer Learning with Vision transformer Model.  
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improved patient outcomes and reduced healthcare costs. Comparative 
analysis shows that ensemble transfer learning models with vision 
transformer significantly improve classification performance in terms of 
accuracy, precision, recall, and F1-score. In summary, the individual TL 
models have limited discrimination and struggle to capture complex 
patterns. However, the ensemble transfer learning models with vision 
transformer show significant improvements as compared to individual 
models. This indicates that combining multiple models and incorpo
rating vision transformers enhances classification performance. There
fore, it can be inferred that using ensemble transfer learning models with 
vision transformer can lead to improved classification performance 
compared to individual models or traditional transfer learning ap
proaches. In future, this work will be extended with other cyber-physical 
systems for smart healthcare applications. Future work will combine 
multiple disease diagnosis in single platform for real-time investigation. 
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